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Abstract. The lepton pair production e−e+→e−e+l−l+ or µ−µ+ → µ−µ+l−l+is studied in the dominant
cross section region of scattering angles mj/Ej . θj � 1. An analytical expression is found for all 64
helicity amplitudes of these processes. The accuracy of the obtained formulae is given omitting only terms
of the order of m2

j/E2
j , θ2

j , and θjmj/Ej . The result has a compact form convenient both for analytical
and numerical calculations of various cross sections in this dominating scattering regime.

1 Introduction

Colliders with electron and photon beams are now widely
used or designed to study fundamental interactions.
Among other QED reactions, those inelastic processes in
which the cross sections do not fall with increasing ener-
gies are of special interest. For third and fourth orders in
the electromagnetic coupling α these processes are shown
in Figs. 1–8 (only block diagrams are presented). Figures 1
and 2 describe the lepton pair production in γe and γγ col-
lisions arising from γγ∗ interactions. Figures 3 and 4 corre-
spond to single and double bremsstrahlung (with a single
photon along its parent lepton), Figs. 5 and 6 to the lepton
pair production by the two-photon and bremsstrahlung
mechanisms, Fig. 7 gives the process γe → l+l−eγ and
Fig. 8 the double bremsstrahlung along one direction.

The described processes are important for the follow-
ing reasons:

(i) Some of these reactions are used (or are proposed to
be used) as the monitoring processes to determine the col-
lider luminosity and to measure the polarisation of the col-
liding particles. For example, the double bremsstrahlung
Fig. 2 has been used as the standard calibration process
at several colliders in Novosibirsk, Frascati, and Orsay [1–
3]. In [4] it was suggested that the single bremsstrahlung
(Fig. 1) for measuring the luminosity and the polarisation
of the initial e± at the LEP collider be used (see also
[5]). It has been demonstrated in an experiment [6] that
this single bremsstrahlung process has a good chance to
be used for luminosity purposes. Recently [7] the same
process was proposed to measure the luminosity at the
DAΦNE collider. The processes γγ → µ+µ−e+e− and
γγ → µ+µ−µ+µ− may be useful to monitor colliding γγ
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Fig. 1. Reaction γe → l+l−e
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Fig. 2. Reaction γγ → e+e−l+l−
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Fig. 3. Single bremsstrahlung ee → eeγ

beams [8–10]. Finally, the possibility of designing µ+µ−
colliders is widely discussed [11] at present. Therefore, the
processes µ+µ− → l+l−l+l− (l = e, µ) may be useful for
luminosity measurements at those colliders [12].

(ii) Due to their large cross sections those reactions
contribute as a significant background to a number of ex-
periments in the electro-weak sector and to hadronic cross
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Fig. 4. Double bremsstrahlung ee → eeγγ
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Fig. 5. Two-photon pair production e−e+ → e−e+l−l+

m

�

-

6

�

- ����:XXXXy-
p1

−p2

p3

−p4

q

l p−
−p+

Fig. 6. Bremsstrahlung pair production e−e+ → e−e+l−l+
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Fig. 7. Reaction γe → l+l−eγ

sections. For example, the background process e+e− →
e+e−µ+µ− is of special importance for experiments study-
ing the two-photon π+π− production because of the
known experimental difficulties in discriminating pions
and muons.

(iii) The methods to calculate the helicity amplitudes
of those processes and to obtain some distributions for
them can be easily translated to several semihard QCD
processes such as γγ → qqQQ [10] (q and Q are different
quarks) and γγ → MM ′, γγ → Mqq [13] (M, M ′ denote
neutral mesons such as ρ0, ω, φ, Ψ, π0, a2...).

At high energies with the condition (mj are the lepton
masses)

s = 2p1p2 = 4E1E2 � m2
j , (1)

the dominant contributions to the cross sections of Figs. 1–
8 are given by the region of scattering angles θj which are
much smaller than unity though they may be of the order
of the typical emission angles mj/Ej or larger:

mj/Ej
<∼ θj � 1 . (2)

In this region all processes have the form of two-jet pro-
cesses with an exchange of a single virtual photon γ∗ in
the t channel (see Fig. 9).

The considered QED processes are widely discussed
in the literature. With only unpolarised leptons and pho-
tons taken into account, various differential cross sections
are summarised in [14,15]. Recently the considered reac-
tions have been taken into account as radiative corrections
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Fig. 8. Double bremsstrahlung ee → eeγγ in one direction

�

��

�

��

-

- --
-

6

-

--
-
-

pj

q

p1(E1)

p2(E2)

}jet1

}jet2

Fig. 9. Generic block diagram ee → jet1 jet2

to the unpolarised Bhabha scattering used as calibration
process at LEP [16].

In the near future, beams with polarised leptons and
photons will be available, which will demand the calcu-
lation of cross sections with polarised particles. In this
connection we would like to note that in the kinematic
regions (1) and (2) the discussed QED processes can be
found in a “final form” including the polarisations of all
particles. By this we mean that it is possible to obtain
compact and simple analytical expressions for all helic-
ity amplitudes with high accuracy. Omitting terms of the
order of

m2
j/E2

j , θ2
j , mj/Ejθj (3)

only, the amplitude Mfi of any process given in Figs. 1–8
can be represented in a simple factorised form,

Mfi =
s

q2 J1J2 . (4)

The vertex factor J1 (J2) corresponds to the first jet or
upper block (second jet or lower block) of Fig. 9. The fac-
tor J1(2) depends on the energy fraction xj = Ej/E1(2),
the transverse momenta pj⊥, the helicities λi of the par-
ticles in the first (second) jet and the helicity λ1(2) of the
initial particle with 4-momentum p1(2). The function J1(2)
is independent of the cms energy squared s.

This approximation differs considerably from the
known results of the CALCUL group and others [17,18]
where such processes are calculated for not too small scat-
tering angles of the final particles. This allows us to ne-
glect lepton masses completely, i.e. neglecting the terms of
the order of mj/|pj⊥|, which, however, give the dominant
contribution to the total cross section at small angles.

For the reactions of Figs. 1–4, 7 the corresponding ver-
tex factors and some differential cross sections have been
found [9,10,19]. These vertex factors are presented in
Sect. 2 and partly used below, too.

In the present paper we give a complete set of helicity
amplitudes for the lepton pair production at e±e− and
µ±µ− colliders (see Figs. 5 and 6) in the region (1) and
(2). For definiteness, we consider the process

e−e+ → e−e+µ−µ+ . (5)
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In Sect. 3 we derive the vertex factors necessary to cal-
culate the transition amplitude of the two-photon lepton
pair production of Fig. 5. Section 4 is devoted to the pair
production via bremsstrahlung. In Sect. 5 our results are
briefly summarised and qualitative features of cross sec-
tions are discussed.

To complete the jet-like QED tree processes to fourth
order, the double bremsstrahlung along one jet direction
has to be calculated for the kinematic region under dis-
cussion. This work is now in progress.

Let us introduce some notations using the block dia-
gram of Fig. 9 as an example. We use a reference frame
in which the initial particles with 4-momenta p1 and p2
perform a head-on collision with energies E1 and E2 of
the same order (e.g. at the B-factory). The z axis is cho-
sen along the momentum p1, the azimuthal angles are
denoted by ϕi (they are referred to one fixed x axis). It is
convenient to introduce “the almost light-like” 4-vectors
p and p′, where

p = p1 − (m2/s) p2 , p′ = p2 − (m2/s) p1 ,

p2 = p′2 = m6/s2 , s = 2p1p2 = 2pp′ + 3m4/s . (6)

Throughout the paper we use the notation Q and R which
enter in the definition of the vertex factors

Q =
u
a

+
v
b

, R =
1
a

− 1
b

,

u +v = q⊥ , b − a = v2 − u2 . (7)

q⊥ denotes the transverse momentum of the t channel
virtual photon. The quantities u, v, a, and b are process
dependent. Note the following useful relation between Q2

and R2:

Q2 + (a − u2)R2 =
q2

⊥
ab

. (8)

Additionally, the helicity vectors

eλ = − λ√
2
(1, iλ, 0) = −e∗

−λ , λ = ±1 (9)

are used to describe the photon polarisation.

2 Our previous results

The amplitude Mfi corresponding to the diagram of Fig. 9
can be presented in the form

Mfi = Mµ
1 (gµν/q2) Mν

2 , (10)

where Mµ
1 and Mν

2 are the amplitudes of the upper and
lower block of Fig. 9, respectively, (−gµν/2) denotes the
density matrix of the virtual photon. The transition am-
plitude M1 describes the scattering of an incoming lepton
or photon with a virtual photon of “mass” squared q2 and
polarisation vector e = q⊥/|q⊥| to some QED final state
in the jet kinematics (1–2) (similar for M2).

With accuracy (3) the gµν matrix can be transformed
to the form

gµν → (2/s) p′
µ pν (11)
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(for detail see [20], Sect. 4.8.4) which results in (4). The
vertex factors J1,2 are given by the block amplitudes Mµ

1,2:

Mfi =
s

q2 J1 J2 ,

J1 = (
√

2/s) Mµ
1 p′

µ , J2 = (
√

2/s) Mµ
2 pµ . (12)

The quantities J1 and J2 can be calculated in the limit
s → ∞ assuming that the energy fractions and trans-
verse momenta of the final particles pi⊥ are finite in this
limit. For the convenience of the reader we present in the
following the vertex factors corresponding to processes of
Figs. 1–4 taken from [10,19].

The vertex factor J1(e±
λ1

→ e±
λ3

) describing the tran-
sition of a e± with momentum p1 and helicity λ1 to a e±
with momentum p3 and helicity λ3 (Fig. 10) is equal to

J1(e±
λ1

→ e±
λ3

) =
√

8πα δλ1λ3 exp [i (λ3ϕ3 − λ1ϕ1)] .

(13)
This vertex contributes to the transition amplitudes of
Figs. 1, 3, 5, 6, and 8. Its derivation is presented in detail
in Sect. 3.2. The azimuthal angle of the initial state lepton
ϕ1 can be chosen equal to zero.

The vertex factor for the transition of a real photon
with energy ω and helicity λ into a lepton pair (Fig. 11,
which corresponds to the upper block of Figs. 1, 2, 7, and
the lower block of Fig. 2) is equal to

J1(γλ → e+
λ+

e−
λ−) = i4πα

√
x+x−

×
[
(x+ − x− + 2λ+λ)

√
2Qeλ δλ+,−λ−

−2mRδλ+,λ− δλ,2λ+

]
exp [i(λ+ϕ+ + λ−ϕ−)] , (14)

where x± = E±/ω are the lepton energy fractions. The
quantities Q and R are defined in (7) with

u = p+⊥ , v = p−⊥ , a = m2 + u2, b = m2 + v2. (15)

The vertex factor for the transition of an electron or
positron e± to e± and a photon with momentum (energy)
k(ω) and helicity λ (Fig. 12, appearing in the upper block
of Figs. 3, 4, and the lower block of Fig. 7) is given by

J1(e±
λ1

→ e±
λ3

γλ) ± 4πα
√

1 − x

×
[(

2 − x

x
+ 2λ1λ

)√
2Qe−λδλ1λ3
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−2mRδλ1,−λ3 δλ,2λ1

]
exp [i(λ3ϕ3 − λ1ϕ1)] , (16)

where x = ω/E1. The quantities Q and R are of form (7),
however

u = k⊥/x , v = q⊥ − k⊥/x ,

a = m2 + u2 , b = m2 + v2 . (17)

Again the azimuthal angle ϕ1 can be set equal to zero.
Note the useful relation for quantities Q and R valid for
relations (15) and (17)

Q2 + m2R2 =
q2

⊥
ab

. (18)

The amplitude of Fig. 12 is the cross channel to that
of Fig. 11. Therefore, the corresponding vertex factors are
connected by the relation

J1(γ → e+e−) → −J1(e → eγ)/x (19)

using the substitution rules,

p+⊥ → k⊥/x , p−⊥ → q⊥ − k⊥/x ,

x+ → 1
x

, x− → −1 − x

x
, (20)

λ → −λ , λ+ → −λ1 , λ− → λ3 , ϕ+,− → ϕ1,3 . (21)

Here relations (20) are known substitution rules for the
unpolarised cross sections [21]. Taking into account the
polarisation of the particles, relations (21) describe addi-
tional substitution rules to be added to (20).

Both vertex factors have a symmetry related to the
obvious symmetry of Fig. 11 under lepton exchange l+ ↔
l−. The vertex factor J1(γ → e+e−) (14) changes its sign
under the replacements + ↔ −. Analogously, the vertex
factor J1(e → eγ)/

√
1 − x (16) changes its sign under

u ↔ v , x ↔ −x/(1 − x) , λ1 ↔ −λ3 , ϕ1 ↔ ϕ3 . (22)

Equations (12)–(17) completely describe all helicity
amplitudes of Figs. 1–4 and 7. They are not only very
compact expressions but they are also convenient for nu-
merical calculations. The reason is that in their form large
compensating terms are already cancelled. Indeed, look-
ing for the behaviour of Q and R in the limit of vanishing
q⊥ one immediately finds that (compare with (18))

|Q|, R ∝ |q⊥| at |q⊥| → 0 . (23)

This completes the summary of previous results.

3 Two-photon mechanism
for the lepton pair production

3.1 Sudakov variables

Let us consider the block diagram of Fig. 5. The 4-momen-
ta (energies) of the final electron and positron are denoted
by p3(E3) and p4(E4), respectively, those of the produced
muons µ∓ by p∓(E∓). The azimuthal angles of the final
particles are ϕ3,4,±, the polar angles of the final electron
and muons with respect to the z axis are θ3,±, the polar
angles of the final positron with respect to the (−z) axis
is θ4. The electron and the muon masses are denoted by
m and M , respectively.

There are three different kinematic regions to be dis-
tinguished:
(i) Electron fragmentation region
The particles in the produced pair move along the ini-
tial electron direction (inside the first jet) with energy
∼ E1, and the scattered positron loses a small fraction of
its energy. We introduce the energy fractions of the final
particles as

x3,± = E3,±/E1 , x = x+ + x− . (24)

These quantities are of the order of 1.
(ii) Positron fragmentation region
It is obtained from the electron fragmentation region by
substituting e− ↔ e+.
(iii) Region of soft particle production
In that region x± � 1; this case will be discussed in
Sect. 5.
Throughout the paper we treat the electron fragmentation
region in detail.

Let us introduce the 4-momenta k = p1 − p3 of the
virtual photon γ∗

k inside block J1 and q = p2 − p4 of the
virtual photon γ∗ connecting the blocks J1 and J2. We
decompose the 4-vectors pi (i = 1–4,±), k and q into
components in the plane of the 4-vectors p and p′ (see
(6)) and in the plane orthogonal to them

pi = αip
′ + βip + pi⊥ ,

k = p1 − p3 = αkp′ + βkp + k⊥ ,

q = p2 − p4 = αqp
′ + βqp + q⊥ . (25)

The parameters α and β are the so-called Sudakov pa-
rameters. In the used reference frame the 4-vectors pi⊥,
k⊥ and q⊥ have x and y components only, e.g.

q⊥ = (0, qx, qy, 0) = (0, q⊥, 0) , q2
⊥ = −q2

⊥ . (26)

In this jet-like kinematics we note the useful relation

p2
j = m2

j = sαjβj − p2
j⊥ (27)

for the final state particles (in our case j = 3, 4,±) which
is valid in general. The 4-vectors pl of particles from the
first jet (here l = 3,±) obtain large components along p1
and small ones along p2. Therefore, in the limit s → ∞
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λ2
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λ4

)

(with accuracy (3)) the quantities βl = 2plp
′/s = El/E1

are finite, whereas αl = 2plp/s = (m2
l + p2

l⊥)/(sβl) are
small1.

In particular, for our case of the electron fragmentation
region (block diagram of Fig. 5, l = 3,±) the Sudakov
parameters,

β1 = 1 , βl = xl , α2 = 1 , α4 = α2 − αq ≈ 1 ,

βk = β1 − β3 = 1 − x3 ≈ x , (28)

are finite at s → ∞, whereas the parameters

α1 =
m2

s
, αl =

m2
l + p2

l⊥
sxl

,

β2 =
m2

s
, β4 =

m2 + p2
4⊥

s
, βq = β2 − β4 ,

αk = α1 − α3 , αq = α+ + α− + α3 − α1 (29)

are small. Therefore, the energy of the final and initial
positrons are approximately equal, E4 ≈ E2. The energy
fractions x and xl are defined in (24).

Next, we derive a useful expression for the virtualities
k2 and q2. From the obvious relations (p1 − k)2 = p2

3 and
(p2 − q)2 = p2

4 or 2p1k = sαk + m2βk = k2 = sαkβk − k2
⊥

and 2p2q = sβq + m2αq = q2 = sαqβq − q2
⊥ we obtain

k2 = −(k2
⊥ + m2β2

k)/(1 − βk) ,

q2 = −(q2
⊥ + m2α2

q)/(1 − αq) . (30)

According to (12) the amplitude e−e+ → e−e+µ−µ+ for
this kinematics has the form (4) where the vertex factors
J1 and J2 have to be determined.

3.2 Calculation of J2

To clarify some points in the further calculations we start
with a detailed derivation of the vertex factor J2 (Fig. 13)
which is equal to

J2(e+
λ2

→ e+
λ4

) = (
√

8πα/s) v̄2 p̂ v4 . (31)

The spinor vj (j = 2, 4) corresponds to a positron with 4-
momentum pj and helicity λj . Using the explicit formulae
for spinors (see Appendix A) we have

J2 = (
√

8πα/s) E1

(√
E2 + m +

√
E2 − m

)
×
[ (√

E4 + m +
√

E4 − m
)

1 Analogously, for a 4-vector pl (here l = 4) of a particle
from the second jet the quantity αl = El/E2 is finite, βl =
(m2

l + p2
l⊥)/(sαl) is small
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Fig. 14. Two-photon pair production amplitude e−γ∗ →
e−µ+µ− for J1(e−

λ1
→ e−

λ3
µ+

λ+
µ−

λ−)

× cos
θ4

2
exp [−iλ4ϕ4] δλ2λ4

+2λ2

(√
E4 + m −

√
E4 − m

)
sin

θ4

2
exp [iλ4ϕ4]

×δλ2, −λ4

]
. (32)

This expression is simplified by omitting terms of the order
O(m2/E2

j ) while keeping terms of the order O(m/Ej)

J2 =
√

8πα
[
cos (θ4/2) exp [−iλ4ϕ4] δλ2λ4

+ λ2(m/E4) sin (θ4/2) exp [iλ4ϕ4] δλ2, −λ4

]
. (33)

Note that in the considered region of small angles (2),
the term ∼ m/E4 has an additional smallness ∼ θ4. There-
fore, omitting terms of the order O(mθ4/E4, θ

2
4/E2

4) (3) we
finally obtain for the vertex factor of the lower block

J2 =
√

8πα exp [−iλ4ϕ4] δλ2λ4 , (34)

from which it follows that the positron conserves its helic-
ity. The origin of the different sign in the exponent com-
pared to (13) is the positron moving opposite to the di-
rection of the z axis.

3.3 Calculation of J1

We present the vertex factor J1 (Fig. 14) of the two-photon
lepton pair production from (12) in the form

J1(e−
λ1

→ e−
λ3

µ+
λ+

µ−
λ−) =

√
2

s

(4πα)3/2

k2

×ū−

[
p̂′(k̂ − p̂+ + M)Î

2kp+ − k2 +
Î(p̂− − k̂ + M)p̂′

2kp− − k2

]
v+ , (35)

where the expression in square brackets corresponds to the
amplitude of the γ∗

kγ∗ → µ+µ− process of Fig. 11 with two
virtual photons. The 4-vector

Iµ = ū3γµu1 (36)

is the current of the e− → e−γ∗
k transition. Comparing

J1 (35) with the corresponding expression needed in the
usual photoproduction γe → µ+µ−e of Fig. 1,

J1(γλ → µ+
λ+

µ−
λ−) =

√
2

s
4πα

×ū−

[
p̂′(k̂ − p̂+ + M)ê

2kp+
+

ê(p̂− − k̂ + M)p̂′

2kp−

]
v+ , (37)
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we note two significant differences:
(i) In the process of Fig. 5 the photon γ∗

k with 4-momen-
tum k is virtual, k2 6= 0, while in the usual photoproduc-
tion this photon is real, k2 = 0;
(ii) In the photoproduction J1 includes the photon polari-
sation vector eµ whereas in the process of Fig. 5 the vertex
factor J1 includes the quantity

√
4παIµ/k2.

In the further calculation we follow the scheme developed
in [10] and [19] taking into account the observed differ-
ences.

In order to calculate the vertex J1 it is convenient (us-
ing gauge invariance) to replace the current Iµ by the
4-vector Vµ which has no component along p (just as
in photoproduction where we can choose eµ in the form
eµ = eµ⊥)

Iµ → Vµ = Iµ − (βI/βk)kµ = αV p′
µ + V⊥µ , (38)

since βV = 2V p′/s = 0. Consequently, in the final expres-
sion only V⊥ enters.

Using the Sudakov decomposition of Sect. 3.1 the de-
nominators in (35) can be transformed to

2kp± − k2 =
x

x±

(
M2 + r2

± − x+x−
x2 k2

)
(39)

with

rµ
± = pµ

±⊥ − (x±/x) kµ
⊥ , r+ + r− = q⊥ . (40)

It is useful to note that the vectors r+ and r− (corre-
sponding to the vectors u and v in (44) below) are the
components of the vectors p+ and p− transverse to the
vector k in full analogy with the corresponding equation
(15) for the photoproduction of Fig. 1.

In the numerator of the first term N = ū−p̂′(k̂ − p̂+ +
M)V̂ v+ the matrix V̂ is transposed to the left, and by
using the Dirac equation (p̂+ + M) v+ = 0 we obtain

N = ū−p̂′ [2V (k − p+) − V̂ k̂] v+ . (41)

Taking into account

2V (k − p+) = −2V⊥r+ − 2(x−/x2) βI k2

and
p̂′ V̂ k̂ v+ = −(x/x+)p̂′ V̂⊥(r̂+ + M) v+ ,

we transform N to

N =
x

x+
ū− p̂′

[
− 2x+

x
V⊥r+ + V̂⊥(r̂+ + M)

−2
x+x−

x3 βI k2
]
v+ . (42)

With similar transformations for the second term we
find the vertex factor J1 in the compact form

J1 =
√

2
(4πα)3/2

s k2 ū−p̂′Λv+ ,

Λ = 2
x+

x
V⊥Q + V̂⊥(Q̂ + MR) − 2

x+x−
x3 βI R k2 (43)

with

u = r+ , v = r− ,

a = M2 + u2 − x+x−
x2 k2, (44)

b = M2 + v2 − x+x−
x2 k2.

The 4-vector Q in the considered reference frame has trans-
verse components only Q = (0,Q, 0) and the quantities Q
and R are defined in (7). Note the relation (see (8) and
compare with (18))

Q2 +
(
M2 − x+x−

x2 k2
)

R2 =
q2

⊥
ab

. (45)

To prove the independence of J1 on s, we use the ex-
plicit formulae for the spinors u− and v+ and omit terms of
the order of (3) (just as was done in (33)–(36)). Moreover,
to get a simple final expression for the helicity amplitudes,
it is useful to introduce the helicity eigenvectors eλ (9) and
to decompose the vector V⊥ in the helicity basis eλ

V⊥ =
∑

λ=±1

(V⊥e∗
λ) eλ = −

∑
λ=±1

(V⊥e−λ) eλ . (46)

As a result, we obtain with accuracy (3)

J1 = i (4πα)3/2
√

x+x−
k2 exp [i(λ+ϕ+ + λ−ϕ−)]

×
{∑

λ

(V⊥e∗
λ)
[(x+ − x−

x
+ 2λ+λ

)√
2Qeλδλ+,−λ−

−2MRδλ+λ−δλ,2λ+

]
−2

√
2

x+x−
x3 βI R k2δλ+,−λ−

}
. (47)

For vanishing virtuality (k2 → 0) the expression in the
square brackets of this equation coincides with the corre-
sponding expression in (14) by identifying x = 1.

The result (47) can be presented with the same ac-
curacy in another form using the two-component spinors
wλj in which we have to put the polar scattering angles
of muons equal to zero (θ± = 0)

J1 = i
√

2(4πα)3/2
√

x+x−
k2

×w+
λ−

{x+ − x−
x

QV⊥ + iσ[Q + MRn1,V⊥]

−2
x+x−

x3 βI R k2
}

w−λ+ (48)

with the Pauli matrices σ and the unit vector

n1 = p1/|p1| . (49)

The only quantities which remain to be calculated are
βI and V⊥e∗

λ. Setting the azimuthal angle of the incoming
electron equal to zero (ϕ1 = 0) we find

βI = (2/s) p′
µIµ = (2/s)ū3p̂

′u1

= 2
√

1 − x exp [iλ3ϕ3] δλ1λ3 (50)
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and

V⊥e∗
λ = −λ

√
2E1E3 exp [iλ3ϕ3]

×
[(1 − x

x
+ δλ,2λ1

)
θ3 exp [−iλϕ3] δλ1λ3

+ λ
( m

E3
− m

E1

)
δλ,2λ1 δλ1,−λ3

]
. (51)

The corresponding expressions suitable for crossing can
be obtained by holding the energy fraction x1(= 1) and
the polar θ1(= 0) and azimuthal ϕ1(= 0) angles of the
incoming electron as free parameters. In that case one
obtains (x3 = 1 − x)

βI = 2
√

x1x3 exp [i(λ3ϕ3 − λ1ϕ1)] δλ1λ3 , (52)

V⊥e∗
λ = −V⊥e−λ = −λ

√
2E1E3 exp [i(λ3ϕ3 − λ1ϕ1)]

×
{[(x1

x
+ δλ,−2λ1

)
θ1 exp [−iλϕ1]

+
(x3

x
+ δλ,2λ1

)
θ3 exp [−iλϕ3]

]
δλ1λ3

−λ
( m

E3
− m

E1

)
δλ,2λ1 δλ1,−λ3

}
. (53)

The newly calculated vertex factor J1 has again a sym-
metry related to the obvious symmetry of Fig. 14 under
lepton exchange µ+ ↔ µ−. It changes its sign when re-
placing indices + ↔ −.

4 Bremsstrahlung mechanism
for the lepton pair production

Let us consider the block diagram of Fig. 6. The corre-
sponding amplitude has the form (12) where the vertex
factor J2 is the same as in (34). The vertex factor J1
(Fig. 15) we present in the form

J1(e−
λ1

→ e−
λ3

µ+
λ+

µ−
λ−) =

√
2

s

(4πα)3/2

l2

×ū3

[
p̂′(−l̂ + p̂1 + m)Î

2lp1 − l2
+

Î(p̂3 + l̂ + m)p̂′

−2lp3 − l2

]
u1 (54)

where the expression in square brackets corresponds to
the amplitude of the Compton scattering of the type of
Fig. 12 with the virtual initial photon q and the virtual
final photon

l = p+ + p− = αlp
′ + βlp + l⊥ .

Now the 4-vector Iµ denotes the current of the γ∗ → µ+µ−
transition

Iµ = ū−γµv+ . (55)

As in Sect. 3.3 it is convenient to replace this current by
the 4-vector Vµ without the component along p (compare
with (38))

Iµ → Vµ = Iµ − (βI/βl) lµ = αV p′
µ + V⊥µ , (56)

m-

6

����:XXXXy-
-l

p3p1

q

=

p−
−p+

- - -

6

6

����:XXXXy
l

q
+ - - -

l

q 6

6

����:XXXXy

Fig. 15. Bremsstrahlung pair production amplitude e−γ∗ →
e−µ+µ− for J1(e−

λ1
→ e−

λ3
µ+

λ+
µ−

λ−)

because βV = 2V p′/s = 0.
It is easy to see that the vertex factor (54) with its cur-

rent (55) can be obtained from (35) and (36) substituting

p+ → −p1 , p− → p3 , k → −l ,

M → m , v+ ↔ u1 , ū− ↔ ū3 . (57)

This means that the final expression for J1 can be found
from (47) by the following substitution rules (compare
with (20) and (21))

k2 → l2 , M → m ,

r+ → l⊥/x , r− → q⊥ − l⊥/x ,

β+ = x+ → −β1 = −1 ,

β− = x− → β3 = x3 ≈ 1 − x ,

βk ≈ x → −βl = −x , (58)

and

λ → −λ , λ+ → −λ1 , λ− → λ3 , ϕ+,− → ϕ1,3 . (59)

Using these rules we find (compare with (47))

J1 = (4πα)3/2
√

1 − x

l2
ei(λ3ϕ3−λ1ϕ1)

×
{∑

λ

(V⊥eλ)
[(2 − x

x
+ 2λ1λ

) √
2Qe∗

λ δλ1λ3

+2mR δλ1,−λ3δλ,2λ1

]
−2

√
2

1 − x

x3 βIR l2 δλ1λ3

}
, (60)

where

u =
l⊥
x

, v = q⊥ − l⊥
x

,

a = m2 + u2 +
1 − x

x2 l2 , b = m2 + v2 +
1 − x

x2 l2 (61)

and the quantities Q and R are given in (7). For l2 → 0
the expression in square brackets in (60) coincides with
the corresponding expression in (16).

Let us point out that

l2 = (p+ + p−)2 = s(α+ + α−)βl − (p+⊥ + p−⊥)2

=
(x+p−⊥ − x−p+⊥)2 + M2x2

x+x−
. (62)

Note also the useful relation (compare with (18) and (45))

Q2 +
(

m2 +
1 − x

x2 l2
)

R2 =
q2

⊥
ab

. (63)
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The result (60) can also be presented with the same
accuracy in another form using two-component spinors
wλj in which we have to set the polar scattering angle
θ3 equal to zero, θ3 = 0 (compare with (47))

J1 =
√

2 (4πα)3/2
√

1 − x

l2

×w+
λ3

{2 − x

x
QV⊥ + iσ[Q + mRn1,V⊥]

−2
1 − x

x3 βI R l2
}

wλ1 . (64)

The explicitly calculated quantities βI and V⊥eλ are

βI = (2/s) p′
µIµ = (2/s)ū−p̂′v+

= 2i
√

x+x− exp [i(λ+ϕ+ + λ−ϕ−)] δλ+,−λ− (65)

and

V⊥eλ = iλ
√

2E+E− exp [i(λ+ϕ+ + λ−ϕ−)]

×
{[(x+

x
− δλ,2λ−

)
θ+ exp [iλϕ+]

+
(x−

x
− δλ,2λ+

)
θ− exp [iλϕ−]

]
δλ+,−λ−

+λ
( M

E+
+

M

E−

)
δλ,2λ+ δλ+,λ−

}
. (66)

Equations (52) and (53) or (50) and (51) can be obtained
from (65) and (66) using the rules (58) and (59).

5 Discussion

The main results of our paper are summarised in (47) and
(60) (combined with (4) and (34)), which give the ana-
lytical expressions of all 64 helicity amplitudes for small-
angle lepton pair production in e−e+ or µ−µ+ collisions.
Since various distributions of this pair production are well-
known (see, for example, [14,15]), we briefly discuss only
some qualitative features of the obtained results.

(i) As for the processes of Figs. 1–4 and 7, the ob-
tained formulae are very compact expressions. Addition-
ally, they are convenient for numerical calculations since
in their form large compensating terms are already can-
celled. Indeed, the quantities Q and R, which are defined
in (7) (with (44) or (61)), and the vertex factors J1, given
in (47) and (60), themselves vanish at small transverse
momentum of the t channel exchange photon |q⊥|

|Q|, R, J1 ∝ |q⊥| at |q⊥| → 0 . (67)

Therefore, the amplitude of the process behaves ((4), (67),
(34), (30)) as

Mfi ∝ |q⊥|
q2

⊥ + m2α2
q

at |q⊥| → 0 . (68)

Here the mass m denotes that of the colliding lepton.
(ii) The behaviour of J1 for two-photon pair produc-

tion (47) at small |k⊥| is mainly determined by the factor

V⊥/k2. Averaging over the spin states of the initial elec-
tron and summing up over the final electron spin we find

1
2

∑
λ1,λ3

ViV
∗
j =

4
x2 kikj − k2 δij ; i, j = x, y (69)

from which it follows that

|J1|2 ∝ (2 − 2x + x2)k2
⊥ + m2x4

(k2
⊥ + m2x2)2

at |k⊥| → 0 . (70)

(iii) Let us consider the amplitudes for bremsstrahlung
pair production which violate electron helicity conserva-
tion. They are proportional (see (60)) to

m R δλ1,−λ3 δλ,2λ1 . (71)

Therefore, in such amplitudes the photon helicity λ is
strictly connected with the helicity of the initial electron
λ = 2λ1. The relative magnitude of these amplitudes can
be estimated as

|J1(λ3 = −λ1)|
|J1(λ3 = +λ1)| ∼ xm|R|

|Q| . (72)

This ratio is small at m/|pi⊥|, m/|q⊥| � 1, i.e. in the
region of not very small scattering angles. The same be-
haviour show the amplitudes which violate muon helicity
conservation being proportional to M δλ+,λ− δλ,2λ+ .

It is interesting to note that the amplitudes which
violate the muon (electron) helicity conservation have a
specific dependence on the azimuthal angles. This is true
both for the two-photon and bremsstrahlung mechanism:
if λ+ = λ− (or λ1 = −λ3) then Mfi ∼ exp[iλ+(ϕ− + ϕ+)]
(or Mfi ∼ exp[iλ1(ϕ1 + ϕ3)] ).

(iv) The two-photon lepton pair production mecha-
nism dominates in the region of soft particle production
mentioned in Sect. 3.1. The produced leptons have low en-
ergies compared with the initial energy E1, i.e. at x± � 1.
In this region

V⊥ ≈ −(βI/x)k⊥ (73)

and the vertex factor J1 (48) is considerably simplified

J1 = −i
√

2(4πα)3/2
√

x+x−
x

βI

k2 w+
λ− (A + iσB) w−λ+ ,

A =
x+ − x−

x
Qk⊥ − 2

x+x−
x2 Rk2

⊥ ,

B = [Q + MRn1,k⊥] . (74)

The differential cross section for unpolarised particles is
obtained as follows (i = 1 − 4,±):

dσ =
1
4

∑
λi

∣∣∣∣ s

q2 J1J2

∣∣∣∣
2

dΓ

2s
= 32

(4πα)4

(q2k2)2
x+x−

x2

× (A2 + B2) s

2
dΓ , (75)

where dΓ is the phase space of the final particles. Using the
relation (45), the expression A2 + B2 can be transformed
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to the symmetric form

A2 + B2 =
k2

⊥q2
⊥

ab
− x+x−

x2a2b2

×{(k⊥q⊥)(k⊥q⊥ − p2
+⊥ − p2

−⊥ − 2M2)

+(k⊥∆)(q⊥∆)
}2

,

∆ = p+⊥ − p−⊥ (76)

which coincides with the equation 4.21 given in [15].
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Appendix A
Definitions of polarised leptonic spinors

A polarisation state of an electron with momentum p,
energy E =

√
p2 + m2 and helicity λ = ±1/2 is described

by the bispinor

u(λ)
p =

( √
E + m w

(λ)
n√

E − m (σn) w
(λ)
n

)
,

n = p/|p| = (sin θ cos ϕ, sin θ sinϕ, cos θ),

where σ are the Pauli matrices and the two-component
spinors w

(λ)
n obey the equations

(σn) w(λ)
n = 2λ w(λ)

n , w(λ)+
n w(λ′)

n = δλλ′ ,

w(1/2)
n =

(
exp [−iϕ/2] cos (θ/2)
exp [iϕ/2] sin (θ/2)

)
,

w(−1/2)
n =

(− exp [−iϕ/2] sin (θ/2)
exp [iϕ/2] cos (θ/2)

)
.

The normalisation conditions are

ū(λ)
p u(λ′)

p = 2m δλλ′ ,
∑

λ

u(λ)
p ū(λ)

p = p̂ + m .

For positrons the corresponding formulae are given by

v(λ)
p = −2λi

(√
E − m (σn) w

(−λ)
n√

E + m w
(−λ)
n

)
,

v̄(λ)
p v(λ′)

p = −2m δλλ′ ,
∑

λ

v(λ)
p v̄(λ)

p = p̂ − m .

In the paper we also use the short notations uj = u
(λj)
pj ,

vj = v
(λj)
pj and wλj = w

(λj)
nj . For the initial electron with

momentum p1 along the z axis we put θ = ϕ = 0, for the
initial positron with p2 opposite to the z axis θ = π , ϕ =
0. For the final positron with momentum p4 θ = π − θ4
and ϕ = ϕ4 are used.
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